The ethylene response pathway in Arabidopsis.
نویسنده
چکیده
The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.
منابع مشابه
Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملبررسی تاثیر تغییر عملکرد ژن های مختلف بر واکنش گیاهان به اتیلن (C2H4) در شرایط in vitro در آرابیدوپسیس تالیانا
gte mso 9]> Normal 0 false false false MicrosoftInternetExplorer4 gte mso 9]> Normal 0 false false false MicrosoftInternetExplorer4 gte mso 9]> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" mso-t...
متن کاملActivation of the Ethylene Gas Response Pathway in Arabidopsis by the Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins
Mutations in the Arabidopsis ETHYLENE-INSENSITIVE3 (EIN3) gene severely limit a plant's response to the gaseous hormone ethylene. ein3 mutants show a loss of ethylene-mediated effects including gene expression, the triple response, cell growth inhibition, and accelerated senescence. EIN3 acts downstream of the histidine kinase ethylene receptor, ETR1, and the Raf-like kinase, CTR1. The EIN3 gen...
متن کاملTemporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis
The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chrom...
متن کاملThe ethylene signaling pathway: new insights.
During the past decade, molecular genetic studies on the reference plant Arabidopsis have established a largely linear signal transduction pathway for the response to ethylene gas. The biochemical modes of action of many of the signaling components are still unresolved. During the past year, however, progress in several areas has been made on several fronts. The different approaches used have i...
متن کاملEthylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of plant physiology and plant molecular biology
دوره 48 شماره
صفحات -
تاریخ انتشار 1997